
Embedded Peierls instability and the electronic structure of MoO2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 4923

(http://iopscience.iop.org/0953-8984/12/23/303)

Download details:

IP Address: 171.66.16.221

The article was downloaded on 16/05/2010 at 05:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/23
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 12 (2000) 4923–4946. Printed in the UK PII: S0953-8984(00)12580-9

Embedded Peierls instability and the electronic structure
of MoO2

V Eyert†, R Horny, K-H Höck and S Horn
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Abstract. Molybdenum dioxide crystallizes in a monoclinic structure which deviates only slightly
from the rutile structure and is characteristic of several early transition metal dioxides. We
present results of all-electron electronic structure calculations based on density functional theory
within the local density approximation and using the augmented spherical wave method. The
electronic properties of MoO2 are dominated by strong hybridization of O 2p and crystal-field-
split Mo 4d states with bands near the Fermi energy originating almost exclusively from Mo 4d
t2g orbitals. In additional calculations for a hypothetical high-symmetry rutile structure these
bands separate into quasi-one-dimensional d‖ states pointing along the rutile c-axis and the rather
isotropically dispersing π∗ bands. On going to the monoclinic structure, the characteristic metal–
metal dimerization causes strong splitting of the d‖ bands into bonding and antibonding branches
which embrace the nearly inert π∗ bands at EF . As a consequence, large portions of the Fermi
surface are removed. According to our calculations the monoclinic structure of MoO2 thus results
from a Peierls-type instability of the d‖ bands in the presence of, but still rather unaffected by, an
embedding background of π∗ states. Our work has strong implications for the current understanding
of VO2 and the striking metal–insulator/structural transition displayed by this material.

1. Introduction

The rutile-related transition metal dioxides have long been attracting a lot of attention due
to a large variety of physical phenomena arising from the hybridization of the narrow d
states with the ligand p orbitals [1]. This diversity shows up mainly in the 3d series which
comprises the large-gap semiconductor TiO2, the half-metallic ferromagnet CrO2, and the
antiferromagnetic semiconductor MnO2 [2,3], whereas most of the 4d and 5d compounds are
neither semiconducting nor magnetic. However, there exist several members in each group
which display small but characteristic deviations from the rutile structure [1, 2, 4].

Among the transition metal dioxides the d1 members VO2 and NbO2 are exceptional since
they both undergo a metal–insulator transition which is accompanied by a structural transition
from the high-temperature rutile phase to a low-temperature low-symmetry phase. The change
in resistivity especially for vanadium dioxide extends over several orders of magnitude and,
occurring at 340 K, led researchers to expect a broad range of applications [5]. Nevertheless,
the origin of the metal–insulator transition is still a matter of controversy. Several models
have been proposed emphasizing either electron–phonon coupling or strong electron–electron
correlations as the driving force. As a consequence, a complete and widely accepted picture
of the physics of the rutile-related transition metal oxides has not yet evolved.

† Homepage: http://www.physik.uni-augsburg.de/˜eyert/.
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In fact, the deviations from the rutile structure, if present, are of the same kind for all
the early transition metal dioxides. To be specific, MoO2, WO2, TcO2, α-ReO2, and low-
temperature VO2 crystallize in a structure with monoclinic space group and exhibiting the
same characteristics as the rutile structure, namely, a pairing of the metal atoms parallel to
the rutile c-axis and a lateral, zigzag-like, displacement [1]. In contrast, insulating NbO2,
while displaying the same local shifts of the metal atoms, crystallizes in a body-centred lattice
with 32 formula units per cell [6, 8–10]. Thus, to get an idea of the general tendency of the
rutile-type transition metal dioxides to crystallize in a low-symmetry structure as well as of the
impact of the structural properties on the metal–insulator transition, it is worthwhile to look
at compounds neighbouring VO2 which display the same distortion but no such transition.
A possible candidate is MoO2, which is metallic and shows neither a metal–insulator nor a
structural phase transition [1]. Effective masses similar to the free-electron mass have been
reported for this material [17, 18, 21], which, hence, is regarded as rather uncorrelated [7]. It
is thus expected, that, by investigating molybdenum dioxide, we might be able to determine
factors which govern the stability of the monoclinic phase, without being faced with the effects
of electron correlations. Naturally, this will have a considerable impact on our understanding
of the neighbouring compounds and, in particular, of the metal–insulator transitions of VO2

and NbO2.
The electronic structure of MoO2 has been investigated theoretically by means of

phenomenological molecular orbital schemes as well as tight-binding and cluster calculations
[1, 22–27], whereas state-of-the-art band calculations for the crystalline material are still
lacking. According to optical reflectivity measurements, the lowest unfilled Mo 4d levels
lie about 2.5 eV above the top of the O 2p bands [11,12]. UPS and XPS experiments revealed
an approximately 9 eV wide occupied band falling into the low-binding, 3 eV wide Mo 4d
bands and a 6 eV wide group of O 2p bands at higher binding energies [13–15]. The Mo 4d
bands further split into a doublet with peaks at 1.5 and 0.5 eV below the Fermi energy [13,15].
The unoccupied O 2p states, in contrast, as measured by XAS experiments, fall into three
peaks at 1.4, 3.1, and 4.6 eV above the Fermi energy [16]. Finally, de Haas–van Alphen and
Shubnikov–de Haas measurements revealed marked anisotropies of the Fermi surface [17–21].

In the present study we aim at a comprehensive characterization of the electronic structure
in terms of a few relevant orbitals. Furthermore, in order to investigate the mechanisms which
force some of the dioxides into distorted variants of the rutile structure, we complement the
calculations for the experimentally determined monoclinic structure with an additional set of
calculations which use a hypothetical rutile cell arising from symmetrization of the monoclinic
structure. This serves two purposes:

(i) The results for hypothetical rutile MoO2 establish a reference, to which the electronic
structure of ‘real’ MoO2 can be compared. From the differences between the two sets
of calculations, information concerning the stability of the monoclinic structure can be
deduced.

(ii) Investigation of the rutile system in itself might allow one to identify mechanisms which
would destabilize the rutile phase and make MoO2 monoclinic. This includes a closer
look at the Fermi surface as calculated with the hypothetical rutile structure.

The paper is organized as follows. Starting with a short description of the monoclinic
crystal structure and its relation to the rutile structure in section 2, we outline the calculational
method in section 3. The results are presented and discussed in section 4 and summarized in
section 5.
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2. Crystal structure

MoO2 crystallizes in a simple monoclinic lattice with space group P 21/c (C5
2h) [31, 32]. The

lattice constants and the monoclinic angle amount to aM = 5.6109 Å, bM = 4.8562 Å,
cM = 5.6285 Å, and β = 120.95◦, respectively [32]. The crystal structure is displayed in
figure 1. The unit cell, which is highlighted by thick solid lines, comprises four formula units.
The metal atoms as well as the two inequivalent oxygen atoms occupy the general Wyckoff
positions (4e): ±(x, y, z), ±(x, 1

2 − y, 1
2 + z) with the parameters listed in table 1. We have

adopted the standard notation

aM1 =
( 0

0
−aM

)
aM2 =

(−bM

0
0

)
aM3 =

( 0
cM sin β

−cM cos β

)
(1)

for the primitive translations.

Figure 1. The crystal structure of monoclinic MoO2.

Table 1. Crystal structure parameters of monoclinic MoO2 (from reference [32]).

Parameters

Atom Wyckoff positions x y z

Mo (4e) 0.2316 −0.0084 0.0164
O1 (4e) 0.1123 0.2171 0.2335
O2 (4e) 0.3908 −0.3031 0.2987

The close relationship of the monoclinic crystal structure with the rutile structure is still
visible in figure 1, where, apart from the atomic displacements to be discussed below, the
atoms form two stacked rutile cells as indicated by the thin solid lines. Note that the corners
of the monoclinic and tetragonal cells are shifted by half the rutile c-axis or by quarter of the
monoclinic a-axis, which causes the shift of the x-components of all positions in table 1 by
0.25. The rutile structure is based on a simple tetragonal lattice with space group P 42/mnm



4926 V Eyert et al

(D14
4h) [30]. The metal atoms are located at the Wyckoff positions (2a): (0, 0, 0), ( 1

2 , 1
2 , 1

2 ), and
the oxygen atoms occupy the positions (4f ): ±(u, u, 0), ±( 1

2 + u, 1
2 − u, 1

2 ). Yet, the rutile
structure can be alternatively visualized in terms of a body-centred tetragonal lattice formed by
the metal atoms where each metal is surrounded by an oxygen octahedron. Octahedra centred
at the corners and the centre of the cell are rotated by 90◦ about the tetragonal c-axis relative to
each other. As a consequence, the lattice translational symmetry reduces to simple tetragonal
and a unit cell with two formula units results. Octahedra which are neighbouring along the
rutile c-axis share edges, whereas the resulting octahedral chains are interlinked via corners.
Each octahedron has orthorhombic symmetry although the deviations from tetragonal and even
cubic geometry for most compounds are relatively small and still allow for a discussion in terms
of the latter. There exist two different metal–oxygen distances, namely, the apical distance,
which is between metal and oxygen atoms having the same z-value, and the equatorial distance
between the metal atom and the four neighbouring ligand atoms with z = zmetal ±1/2 [2,3,30].

Although there have been indications for the possible onset of a monoclinic-to-rutile
transition at temperatures above 1100 ◦C for Mo0.975Ti0.025O2 [33, 34], no structural phase
transition has been reported for the stoichiometric compound. Nevertheless, since the
monoclinic structure is closely related to the rutile structure, we may construct a hypothetical
rutile cell by properly symmetrizing the atomic positions which will serve as a reference
throughout this paper. As a result, we arrive at lattice constants of a = 4.8562 Å and
c = 2.805 45 Å, which are identical to the monoclinic lattice constants bM and aM/2, resp-
ectively [32]. The rather small c/a ratio of 0.5777 is a consequence of the metal–metal bonding
along the rutile c-axis and is characteristic of the 4d and 5d d2 and d3 compounds [1]. Finally,
the internal u-parameter of the rutile structure, which determines the oxygen position, assumes
the value 0.2847. Note that while symmetrizing the monoclinic structure we have ignored the
strain inherent in this lattice. For this reason, the lattice constants and the internal u-parameter
of the symmetrized rutile cell still contain small uncertainties.

With the rutile reference structure at hand, the distinct deviations of the observed mono-
clinic structure from the hypothetical rutile structure are easily stated:

(i) We observe in figure 1 the aforementioned metal–metal pairing along the tetragonal c-axis.
Due to the alternation of the vertical metal-atom displacements in the directions of the
y-axis, the lattice is simple monoclinic rather than simple tetragonal with a double c-axis.

(ii) Slightly less marked are the in-plane displacements of the Mo atoms which make an angle
of 18◦ with the local apical axis of each octahedron. These shifts likewise alternate along
both the tetragonal a- and c-axes, thus causing the zigzag-like shape of the vertical metal
chains. The oxygen atoms follow the lateral displacements of the metal atoms to a large
degree, whereas the deviations of the vertical oxygen components from the ideal rutile
values are much smaller.

(iii) There is a lattice strain which causes deviations from unity of the ratios

cM sin β

bM
= 0.9940

−2cM cos β

aM
= 1.0318.

It is useful to discuss the electronic structure of rutile-type compounds in terms of local
coordinate systems centred at each metal site. This has been indicated in figure 2, where
we display the angular parts of the metal d orbitals relative to the local reference frame of
the central metal atom. Note that due to the different orientations of octahedra centred at
the corner and the centre of the rutile cell, the local z-axes point alternately along the [110]
and [11̄0] directions. In contrast to the usual adjustment of the x- and y-axes parallel to the
metal–ligand bonds [30], we have rotated these axes by 45◦ about the local z-axes such that
they are parallel and perpendicular, respectively, to the rutile c-axis. With this choice of local
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Figure 2. Angular parts of the d orbitals. Top: d3z2−r2 and dxy ; middle: dx2−y2 ; bottom: dxz

and dyz.

coordinate systems the eg states resulting from the cubic part of the crystal-field splitting of
the metal d orbitals comprise the d3z2−r2 and dxy orbitals, whereas the t2g states are made up
of the dx2−y2 , dxz, and dyz orbitals. The dx2−y2 orbitals point along the rutile c-axis and the
local y-axes, i.e. towards the edges of the basal plane of the octahedron, while the dxz and
dyz orbitals are directed towards the faces. In particular, the dyz states point along the 〈100〉
directions. As a consequence, the dx2−y2 and dxz orbitals mediate σ - and π -type overlap,
respectively, between metal sites within the vertical octahedron chains. The dyz orbitals have
a σ -type overlap, albeit smaller, with their counterparts at metal sites translated by the vectors
〈1, 0, 0〉. This is due to the aforementioned 45◦ rotation of the local coordinate system, which
interchanges the dx2−y2 and dxy orbitals and adjusts the dyz orbitals parallel to the axes of the
rutile basal plane. While the overlap of both the dx2−y2 and dyz orbitals with orbitals of the
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same kind at neighbouring atoms thus connects atoms which are separated by lattice vectors
of the simple tetragonal lattice, coupling between metal atoms which are located at the corner
and the centre of the cell is mediated by the dxz orbitals. These orbitals point to the voids
between the metal atoms of the neighbouring octahedral chains where they overlap with the
dx2−y2 orbitals of these chains.

3. Method of calculation

The calculations are based on density functional theory (DFT) and the local density approx-
imation (LDA) [35, 36]. We employ the augmented spherical wave (ASW) method [37] in
its scalar-relativistic implementation (see references [38–40] for more recent descriptions).
Since the ASW method uses the atomic sphere approximation (ASA) [41], we had to insert
so-called empty spheres into the open rutile structure. These empty spheres are pseudo-atoms
without a nucleus, which are used to model the correct shape of the crystal potential in large
voids [42]. In order to minimize the sphere overlap we have recently developed the sphere
geometry optimization (SGO) method, which solves the problem of finding optimal empty-
sphere positions as well as the radii of all spheres automatically [43]. The routine was applied
to both the rutile and the monoclinic cell. For the former structure, with the addition of eight
empty spheres, the linear overlap of any pair of physical spheres could be kept below 22%,
and the overlap of any pair of physical and empty spheres below 25%. The positions of
the empty spheres are listed in table 2. In addition to the empty-sphere positions, the SGO
algorithm produced atomic sphere radii for all spheres, which are listed in table 3. Table 3
moreover supplies the orbitals used as the basis set for the present calculations. States given in
parentheses were included as tails of the other orbitals (see references [37–40] for more details
on the ASW method).

Table 2. Empty-sphere positions for hypothetical rutile MoO2.

Parameter

Atom Wyckoff positions x

E1 (4c)
E2 (4g) 0.3497

Table 3. Atomic sphere radii and basis-set orbitals for hypothetical rutile MoO2.

Atom Radius/aB Orbitals

Mo 2.330 5s 5p 4d (4f )
O 2.138 2s 2p (3d)
E1 1.741 1s 2p (3d)
E2 1.740 1s 2p (3d)

For the monoclinic cell, twelve empty spheres were needed to keep the linear overlaps
below 20% and 22%, respectively. The positions of the empty spheres as well as the sphere
radii and orbitals are listed in tables 4 and 5.

Self-consistency was achieved by using an efficient algorithm for convergence acceler-
ation [44]. The Brillouin zone sampling was done using an increased number of k-points
ranging from 18 to 1800 points and from 54 to 6750 points, respectively, within the irreducible
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Table 4. Empty-sphere positions for monoclinic MoO2.

Parameters

Atom Wyckoff positions x y z

E1 (2d) 0.5 0.5 0.0
E2 (2c) 0.0 0.0 0.5
E3 (4e) 0.3458 0.3754 0.1805
E4 (4e) 0.1544 −0.1070 0.3110

Table 5. Atomic sphere radii and basis-set orbitals for monoclinic MoO2.

Atom Radius/aB Orbitals

Mo 2.600 5s 5p 4d 4f (5g)
O1 1.650 2s 2p (3d)
O2 1.843 2s 2p (3d)
E1 2.197 1s 2p 3d (4f )
E2 2.372 1s 2p 3d (4f )
E3 1.908 1s 2p 3d (4f )
E4 1.788 1s 2p (3d)

wedge of the tetragonal and monoclinic lattices, ensuring convergence of our results with
respect to the fineness of the k-space grid.

In addition to the band structure and the (partial) densities of states, we evaluated the
crystal orbital overlap population (COOP) based on the notions introduced by Hoffmann [28]
in order to allow for a discussion of chemical bonding. The evaluation of the COOP has been
recently implemented in the ASW method [29] (see also references [3,45]); it was successfully
applied to the interpretation of bonding properties of various compounds [3].

4. Results and discussion

4.1. Band structure and density of states

Within a molecular orbital picture we expect the oxygen 2p levels to be completely filled
and the Mo 4d levels to comprise two electrons. Due to the orthorhombic rather than cubic
symmetry of the octahedra surrounding the metal sites, the low-lying t2g and the high-lying eg

manifolds are further split into singlets. Yet, since the deviations from local cubic symmetry
are small, the crystal-field splitting still should be dominated by its cubic part.

In presenting the calculated results we start out from the hypothetical rutile reference
system and display in figure 3 the electronic states along selected high-symmetry lines within
the first Brillouin zone of the simple tetragonal lattice, shown in figure 4(a). The corresponding
density of states (DOS) is given in figure 5 where we have added the dominant partial densities
of states. The total density of states at the Fermi energy, N(EF ), amounts to 1.3 states eV−1/f.u.
Not shown are low-lying oxygen 2s states.

In figures 3 and 5 we identify three groups of bands. In the energy range from −9.2
to −3.6 eV we observe twelve bands, which trace back mainly to O 2p states but have a
non-negligible contribution due to the Mo 4d states. Bands are most easily counted along
the direction X–R where they are twofold degenerate. The upper two groups, which extend
from −2 to 2.7 and from 3.1 to 6.8 eV, contain six and four bands, respectively, and originate
mainly from Mo 4d states. However, p–d hybridization causes additional O 2p contributions
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Figure 3. Electronic bands of hypothetical rutile MoO2 along selected symmetry lines within the
first Brillouin zone of the simple tetragonal lattice, shown in figure 4(a).
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Figure 4. First Brillouin zones of the (a) simple tetragonal and (b) simple monoclinic lattices.
Backfolding of the tetragonal Brillouin zone implies the following transformation of high-symmetry
points: XT → YM, ZM; MT → CM; ZT → YM; RT → �; AT → ZM.

in this energy range.
The general situation is very similar for the observed monoclinic structure. The cor-

responding band structure along selected high-symmetry lines within the first Brillouin zone
of the simple monoclinic lattice, shown in figure 4(b), as well as the total and partial densities
of states are shown in figures 6 and 7. We identify the same groups of bands as before, which
now extend from −8.3 to −2.5 eV, −1.8 to 3 eV and 3 to 7 eV. However, the deviations from
the DOS calculated for hypothetical rutile MoO2 are also easily stated:
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Figure 5. Total and partial densities of states (DOS) of hypothetical rutile MoO2 per unit cell.
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Figure 6. Electronic bands of monoclinic MoO2 along selected symmetry lines within the first
Brillouin zone of the simple monoclinic lattice, shown in figure 4(b).

(i) On comparing figure 7 to figure 5 we observe an energetical upshift of the O 2p-dominated
group of bands by approximately 1 eV relative to the higher-lying bands. It can be attrib-
uted to the increase of the average bond lengths between the molybdenum atoms and the
oxygen ligands in the monoclinic structure by about 1%, which reduces the bonding–
antibonding splitting of the σ - and π -bonded Mo 4d and O 2p states.

(ii) On going from the rutile to the monoclinic structure, the shape of the density of states,
especially of the middle group of bands, displays conspicuous changes: it becomes more
structured and the low- and high-energy peaks within this group have grown at expense
of the central region.

(iii) From the calculations for the monoclinic structure we obtain a total density of states at
the Fermi energy, N(EF ), of 0.58 states eV−1/f.u., which is half the value resulting from
the calculations for the hypothetical rutile structure.
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Figure 7. Total and partial densities of states (DOS) of monoclinic MoO2 per unit cell.

The reasons underlying in particular the latter two changes become clearer from a more
detailed discussion of the densities of states. To this end we display in figures 8 and 9 the partial
Mo 4d DOS separated into their symmetry components. In both figures, we have included
only contributions from the single molybdenum atom at or near the corner of the rutile cell
and used the local rotated reference frame as visualized in figure 2. Crystal-field splitting,
as expected from the fact that the metal atoms are located at the centres of distorted MoO6

octahedra, is fully reflected by the nearly perfect energetical separation of the 4d t2g and eg

groups of bands. The former states appear almost exclusively in the middle group of bands
ranging from −2 to 2.7 eV and −1.8 to 3 eV, respectively, whereas the eg states dominate the
bands above 3 eV. The small but finite t2g–eg configuration mixing is a measure of octahedral
distortions. Not shown are the contributions of the Mo 4d states to the low-lying oxygen bands.
They are slightly larger for the eg states, which, forming σ bonds, experience a larger overlap
with the O 2p states. For the same reason, the bonding–antibonding splitting is larger for the
eg states as compared to the t2g states, which give rise to π bonds.

In both figures 8 and 9 the differences among the individual symmetry components of the
t2g and eg orbitals, respectively, reflect the orthorhombic site symmetry. Yet, especially the dxz

and dyz partial DOS still bear a certain similarity, which is a consequence of the dominating
tetragonal component of the crystal field. Furthermore, these two partial DOS do not change
much on going from the hypothetical rutile to the monoclinic structure.

This is contrasted with by the behaviour of the dx2−y2 partial DOS, which (i) deviates
considerably in shape from the other t2g partial DOS and (ii) displays a marked sensitivity to the
structural changes. In the hypothetical rutile phase the dx2−y2 states exhibit strong tendencies
towards splitting into two peaks at −1 eV and above 2 eV, and the resulting depletion of
the partial DOS in between contributes substantially to the DOS minimum just above the
Fermi energy visible in figure 5. Nevertheless, striking differences show up on going to the
monoclinic phase: the splitting of these states into two peaks increases by about 0.5 eV and
the partial DOS vanishes almost completely in the interval from −1 to 2 eV, this leading to
the aforementioned change in shape of the total DOS and the strong decrease of the density of
states at EF .
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Figure 8. Partial Mo 4d t2g and eg densities of states (DOS) of hypothetical rutile MoO2. The
selection of orbitals is relative to the local rotated reference frame; see figure 2.

The drastic changes of the dx2−y2 states likewise cause distinct differences of the band
structure. We display in figure 10 the band structure of hypothetical rutile MoO2 using the first
Brillouin zone of the simple monoclinic lattice, shown in figure 4(b). Note that these bands
result from folding back the bands calculated for the rutile structure. In the rutile calculation,
those two bands which, at the � point, give rise to the lowest states within the t2g-derived
group of bands bend upwards along the lines �–A and �–B and cross the higher-lying bands.
In contrast, in the observed monoclinic structure these two bands are well separated from the
other states and form a split-off doublet.

All our results are in very good agreement with the molecular orbital schemes presented by
Rogers et al [1] and Goodenough [22] as well as with the cluster and tight-binding calculations
by Sasaki et al [25] and Burdett [27]. According to these approaches, the dx2−y2 band,
designated as the d‖ band, experiences a strong bonding–antibonding splitting due to the metal–
metal pairing along the tetragonal c-axis, while the π∗ bands (dxz and dyz in our notation) stay
mainly in between the two d‖ peaks without any further splittings.
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Figure 9. Partial Mo 4d t2g and eg densities of states (DOS) of monoclinic MoO2. The selection
of orbitals is relative to the local rotated reference frame.
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Figure 10. Electronic bands of hy-
pothetical rutile MoO2 along selected
symmetry lines within the simple mon-
oclinic Brillouin zone, shown in fig-
ure 4(b).

4.2. Chemical bonding

Our previous findings are supported by an analysis of the chemical bonding properties.
We show in figure 11 crystal orbital overlap population (COOP) curves calculated for the
hypothetical rutile structure. They display rather ‘canonical’ behaviour with positive (bonding)
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Figure 11. Total and partial crystal
orbital overlap populations (COOP) of
hypothetical rutile MoO2.

and negative (antibonding) contributions in the low- and high-energy regions of a band [3]. In
the case of the oxygen–oxygen overlap this is visible for both the oxygen- and molybdenum-
dominated bands separately. Below approximately −6.5 eV we find bonding O–O bands,
whereas the antibonding bands appear in the energy range between −6.5 and −3.5 eV. As
a consequence, the net contribution of the occupied oxygen–oxygen bonds to the chemical
stability is rather small. The same holds for the almost negligible metal–metal bonding. The
dominating contribution to the chemical stability results from the overlap of Mo 4d and O 2p
orbitals. The corresponding COOP curve is positive below −3.5 eV and negative only in the
Mo 4d-derived bands. Hence, already from the calculations for hypothetical rutile MoO2, we
are able to attribute the overall chemical stability to the metal–ligand bonding.

On going to the observed monoclinic structure we observe only minor changes of the
COOP, which mainly affect the metal–metal bonding. The results are shown in figure 12, where
we have omitted the partial COOP curves for O 2p–O 2p as well as Mo 4d–O 2p bonding which,
like the total COOP, agree closely with the curves calculated for the hypothetical rutile structure.
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Figure 12. Total and partial crystal orbital
overlap populations (COOP) of monoclinic
MoO2.
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As expected, differences arise mainly from the bonding and antibonding Mo 4dx2−y2 peaks,
which lead to a distinct positive contribution to the Mo–Mo curve between −2 and −1 eV and
to an additional negative peak at the upper edge of the t2g bands between 2 and 3 eV. These two
peaks, which are indicated by arrows in figure 12, signal the increased metal–metal bonding
accompanying the pairing of the atoms in the monoclinic structure. Moreover, the formation
of bonding and antibonding Mo 4dx2−y2 states below and above the Fermi energy, respectively,
increases the value of the total integrated COOP at the Fermi level (see reference [3] for details)
and thus enhances significantly the stability of the compound.

4.3. Comparison to experiment

We display in figures 13 and 14 total as well as partial Mo 4d and O 2p densities of states
folded with Gaussians of 0.25 and 0.5 eV width, respectively, for the occupied and unoccupied
part of the spectrum. In figure 13 we have added UPS spectra as measured by Goering [15].
Good agreement of the calculated and measured curves is found. In addition, the calculated
total DOS compares very well with the XPS spectra reported by Beatham and Orchard as well
as those reported by Werfel and Minni [13, 14]. So far, our results are quite similar to those
produced by the cluster calculations presented by Sasaki et al and Yoshino et al [25,26]. The
occupied bandwidth of ≈8.8 eV deduced from the experiments is close to the calculated 8.5 eV.
According to Beatham and Orchard the valence band is split into a low- and a high-binding
part of about 3 and 6 eV width, respectively [13]. As their UPS measurements furthermore
reveal, the low-binding region falls into two main peaks at ≈−1.5 and −0.5 eV. In the UPS
spectra shown in figure 13, we find the corresponding peaks at −1.7 and −0.6 eV, whereas in
the calculations they appear at −1.15 and −0.45 eV. Hence, we can state that there is almost
perfect agreement for the Mo 4dxz and 4dyz states but an energetical upshift of the bonding Mo
4dx2−y2 bands of ≈0.45 eV relative to experiment. In passing, we note that the position of the
calculated O 2p-derived bands compares very well with the optical reflectance data given by
Chase as well as those given by Dissanayake and Chase, who find these states 2.5 eV below
the Fermi energy [11, 12].
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Figure 13. Total and partial densities of states (DOS) of monoclinic MoO2 folded with a 0.25 eV
wide Gaussian (lower set of curves) and UPS spectra (upper curve; from reference [15]).
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In figure 14 we have complemented the theoretical results with soft-x-ray absorption
spectra as measured by Müller [16]. In order to probe the angular dependence, in these
experiments the polarization vector E was oriented either parallel (φ = 90◦) or else
perpendicular (φ = 0◦) to the rutile c-axis. In the former case, dipole selection rules allow
for transitions from the O 1s to the O 2pz state. In contrast, for E perpendicular to the c-
axis, transitions to the O 2px and 2py states may occur. We have added the partial DOS of
the corresponding final states in figure 14. However, note that the curve marked O 2px, py

comprises only the mean average of these orbitals, since the component perpendicular to E

is not seen in experiment. For the same reason, the curve marked O 2p actually contains
the contribution from 1

2 (px + py) + pz. Again, there is an overall good agreement between
experiment and theory. This holds not only for the positions of most peaks, but also for
their relative intensity as well as their angular dependence. We draw attention especially to the
suppression, on increase of the angle φ, of the peak due to the Mo 4dxz and 4dyz bands at 1.2 eV.
Still, this good agreement is contrasted with two distinct deviations. First, the broad maximum
at 6.6 eV in the calculated DOS, which results from the O 2px and 2py states, is not seen in
experiment. According to the molybdenum partial DOS shown in figure 9, this maximum
originates mainly from the Mo 4d3z2−r2 orbitals. Second, the maximum in the O 2pz partial
DOS at ≈2.4 eV is located at ≈3.1 eV in the XAS spectra. From a comparison to the partial
Mo 4d DOS, in figure 9, we attribute this maximum to the antibonding dx2−y2 orbitals. Their
energetical downshift relative to experiment adds to the aforementioned deviation of about
0.45 eV of the corresponding bonding states. It thus seems that the calculations underestimate
the bonding–antibonding splitting of the Mo 4dx2−y2 states by approximately 1 eV.

4.4. The Fermi surface

So far our results have established full agreement of the molecular orbital picture sketched
by Rogers et al [1] as well as by Goodenough [22] with state-of-the-art electronic structure
calculations in that they relate the splitting of the Mo 4dx2−y2 states into two peaks to the metal–
metal pairing in the monoclinic structure. However, we still lack a deeper understanding of the
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mechanisms driving this scenario including the R-point instability of the hypothetical rutile
structure compatible with the experimentally observed monoclinic structure. For this reason
we will proceed in two steps and investigate in this and the subsequent subsection in more
detail the Fermi surface as well as the symmetry character of the electronic states near the
Fermi energy.

Cuts through the Fermi surface parallel to the {100} and {110} planes which were calc-
ulated for the hypothetical rutile structure are shown in figures 15, 16, and 17. They contain
the �–X–Z–R, �–M–Z–A, and X–M–R–A planes, respectively, which are the vertical borders
of the irreducible wedge of the first Brillouin zone; see figure 4(a). The interpretation of these
figures is greatly facilitated by combining them with the band structure shown in figure 3. From
this, we recognize electron- and hole-like regions near the � and Z points, respectively. Along
the line Z–A, as given in figure 16, several electron-like pockets interpenetrate. Of course, the
most striking features are the two flat Fermi surface sheets in figure 16 halfway between the
lines �–M and Z–A, which hardly depend on the lateral position of the k-vector. These flat
sheets show up likewise in figures 15 and 17 where, however, they extend only over part of
the respective horizontal lines. Gathering together the information from figures 15 to 17, we
conclude that the Fermi surface forms two almost perfect {001} planes at height π/(2c), which
have rather small interruptions above the X points. These planes give rise to Fermi surface
nesting with the z-component of the wave vector being qz = π/c.
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Figure 15. A {100} cut through the Fermi surface of hypothetical
rutile MoO2.

However, the lateral components of the q-vector are still unspecified: any wave vector with
qz = π/c transforms the flat sheets into themselves irrespective of the other two components.
In order to attempt full specification of the wave vector we have to take the remaining portions
of the Fermi surface into account. In doing so, we might deduce further nesting from the nearly
rectangular sheet centred about the � point in figure 15, which has a small narrowing in the
basal plane of the Brillouin zone. This part of the Fermi surface favours wave vectors with the
x- or y-component equal to π/a. However, the Fermi surface area visible in figure 15 is much
smaller than the previously discussed twofold flat {001} sheet. To conclude, Fermi surface
considerations do not allow one to uniquely determine a nesting vector and, hence, cannot
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Figure 17. A {100} cut through the Fermi surface of hypothetical
rutile MoO2.

explain the instability of the hypothetical rutile structure against the observed monoclinic
structure.

Although somewhat disappointing, this result fits into the broader context of the
neighbouring dioxides, which likewise prefer the monoclinic over the rutile structure. Since
they comprise d1, d2, and d3 configurations, a Fermi surface instability is hard to imagine as a
common mechanism for all these compounds. Similar considerations led Goodenough to rule
out a Jahn–Teller effect as a major source for the crystal structure characteristics of the early
transition metal dioxides [46].
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4.5. Symmetry analysis of the band structure

Still keeping the conspicuous nesting with qz = π/c in mind, we turn to the symmetry analysis
of the electronic band structure, which complements and adds detail to the previous discussion
of the partial densities of states. To this end we display in figures 18, 19, and 20 the electronic
bands in the narrow energy range from −2.5 to 3.5 eV about the Fermi energy in a special
representation. In all three figures, each band at each k-point is given a bar whose length is a
measure for the contribution from a specified orbital. Note that in doing this we again referred
to the local frame of reference. Hence, figures 18 to 20 correspond to the partial Mo 4d t2g

DOS shown in figure 8, which likewise made use of the local reference frame.
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Figure 18. Weighted electronic bands of hypothetical rutile MoO2. For each band the width of the
bar indicates the contribution from the 4dx2−y2 orbital of the Mo atom at (0, 0, 0) relative to the
local rotated reference frame.

In figure 18 we observe a strong dispersion of the Mo 4dx2−y2 -derived bands along all
lines parallel to �–Z, whereas the dispersion perpendicular to this line is almost vanishing.
Recalling the fact that the local x-axes point along the rutile c-axis, we attribute the strong
dispersion in this direction to the overlap of the dx2−y2 orbitals at metal sites neighbouring
in the z-direction. The large bandwidth thus reflects the small metal–metal distance in this
direction. The splitting of these states especially along the lines �–M and A–Z is caused by
their overlap across the neighbouring octahedral chains, i.e. the inter-chain interaction. Since
the distance between chains across the diagonal of the rutile basal plane is smaller than that
parallel to the 〈100〉 axes, this splitting is much reduced along the lines �–X, R–Z, and R–A.

The Mo 4dyz-derived bands are highlighted in figure 20. They show a large dispersion in
all directions with the bandwidth being somewhat reduced as compared to that of the dx2−y2 -
derived bands. Worth mentioning is the rather large splitting at the � point. It is a consequence
of the underlying body-centred tetragonal (bct) lattice formed by the metal atoms, and results
from backfolding the bands from the Brillouin zone of the bct lattice to the smaller one of
the simple tetragonal lattice. This effect is visible especially in the bands along the lines
connecting the � point to the X, M, A, and Z points, respectively. Since the formation of the
dyz bands results from σ -type overlap of these orbitals across the tetragonal lattice and the
lattice constants a are larger than the lattice constant c, the overlap is reduced as compared to
that of the dx2−y2 orbitals and so is the dispersion.



Embedded Peierls instability 4941

qq
q

q

q

q

q

q

q

q
q
q
qq
q
q

q

q

q

q

q

q

q
q
q

q

q

q

q

q

q

q

q
q
qqq

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
q
q
qq

q

q

q

q

q

q

q

qqq
q

q

q

q

q

q

q

q

qqqq
q
q
q
q
q
q
q
q
q
q
qqqq

q
q

q

q

q

q

q

q

q

q

q

q
q

q

q

q
q
q
qqqqqqqqq

qq

q

q

q

q

q

q

q

q

q

q
qqq

q
q
qq
qqqqqqqqqqqqq

q

q

q

q

q

q

q

q

q

q

q

qqqqqq

q
q
q
qq

q

q

q

q

q
q
qq
q

q

q

q

q

q

q

q

q

q

qq
q
q
q
q
q
q
q
q
q
qqq

q
q

q

q

q

q

q

q

q
q
q

q

q

q

q

q

q

q

q
q
qqq

q

q

q

q

q

q

q

q

q

q

q

q

qqqqqqqq

q

q

q

q

q
qq

q

q

q

q

q

q
qq
q

q

q

q

q

q

q

q

q

q

q

q
q
q

q

q

q

q

q

q

q

q

q
qqq

q
q

q

q

q

q

q

q

q

q

q

qq
q
q
qqqqqqqqqqq

q

q

qqq

q

q

q

q

q

q

q

q
qqq

q
q

q

q

q
q
qqq

q

q

q

q

q

q

q
q
q

q

q

q

q

q

q

q

q

q

q

qqqqqq

q
q
q
qqqq

qq
q
qqq

q
q

q

q

q

q

q
qqq

qq
q

q

q

q

q

q

q

q

q

q

q

qq
q
q

q

q

q

q
qq
q

q

q

q

q
qq
qqqqqqqqqq

q
q
q
q
q

q

q

q
qqqqqqqqqqq

q

q

q

q

qqqqqqq
qqq

qq
qq
q
q

q

q

q

q

q

q

q

q

q

q
q
q
q
qq
qqqqq

q
q

q

q

q

q

q

q

q

q

qqqq
q
q

q

q

q

q

q

qq

q

q

q

q

q

q

q
qqq

q
q
q
q
qqqq

q

q

q

q

q

q

q

q

qqqqqqqqqqq
q
q
q
q
q
q
qqq

q

q

q

q

q

qqqqqqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q

q
qq

qq
q
q
q

q

q

q

q

q

q

q
q

qq
q
q

q

q

q

q
qq
q

q

q

q

q
qq
qqqqqqqqqq

q
q
q
q
q

q

q

q
q
q

q

q

q

q

q

q

q

qqqqqqqqq
qq
qqqqqqqqqqqqq

qqq

q

q

q

q

qq
q
q
qqqqqq

q
q
q

q

q

q

q

q

q

q

q

q
q

q

q

q

q

q

q

q

qq

q

q
q
qqq

q
q
q
q
q
qqqqqq

qqqqqqqqqqq
q

q

q

q

q

q

q

qqqq
q
q
q
q
q
q
qqq

q

q

q

q

q

qqqqqq

q

q

q

q

q

q

q

q
qqq

q

q

q

q

q

q

q

qq
q
q

q

q

q

q

q

q

q
qq
qqq

qqq
qqqqqq

q
q

q

q

q

q

q

q

q
qqqq

qqqqqqqqqqq
q

q

q

q

q

q
q

q

q

qqqqqqqq
qq
qqqqqqq

qq
q
q
q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
qqqqqqqqqqqqqqqq

q

q

q

q

q

q

q

q

q

q
q

q

q

q

q
q
q
q
q
q
q
q
q
q
q
qqqq

q

q

q

q

q

q

q
q
q

q

q

q

q

q

q
qqqq

q
q
q
q

q

q

q

q

q

q
q

q

q

q

q

q

q

q

q
qqqqqqqqqqqq

qqqqqqq

qq
q
q

q

q

q

q

q

q

q

q

qqqq
qqq

qqqqqq
q
q

q

q

q

q

q

q

q
qqqq

qqqqqqqqqqq
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
q
q
q
qqqqq

q
q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
qq
qqqqqqqqqqqqqqq

q

q

q

q

q

q

q

q

q

q
q

q

q

q

q

q

q

q

q

q

q

q

q

q
q
q
qqq

q
q

q

q

q

q

q

q

q

q

q

q
q
q
qqqqq

q
q
q
q

q

q

q

q

q

q
q

q

q

q

q

q

q

q

q
qqq

q
qq
qq
qqqqqqqqqqq

qq
q
q

q

q

q

q

q

q
q
q
qqqqq

q
q
q
q
q
qq
qq
q
q q

q

q

q

q

q
q
qqq

q
q

q

q

q

q

q
q
qqqq

qq
qq
q q

q

q

q
qq
q

q

q

q
qq

q

q

q

q

q
q
qqq

q
q

q

q

q

q

q

q
qq
q

q

q

q

q
q
q
qqqqq

q
q
q
q
q
qq
qq
q
q qqqqqqqqq

q

� X R Z � R A � M A Z

E

eV
EF

-2.0

0.0

2.0

Figure 19. Weighted electronic bands of hypothetical rutile MoO2. For each band the width of the
bar indicates the contribution from the 4dxz orbital of the Mo atom at (0, 0, 0) relative to the local
rotated reference frame.
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Figure 20. Weighted electronic bands of hypothetical rutile MoO2. For each band the width of the
bar indicates the contribution from the 4dyz orbital of the Mo atom at (0, 0, 0) relative to the local
rotated reference frame.

Finally, Mo 4dxz bands display the smallest dispersion. This is due to the fact that these
orbitals induce no substantial σ -type overlap with neighbouring metal atoms but take part in
the (albeit small) coupling between the octahedral chains.

However, the most important result of the previous band-structure analysis consists of the
fact that all three bands disperse without any substantial hybridization with each other. The
only exception worth mentioning stems from the hybridization of the dx2−y2 bands with the dyz-
and dxz-derived bands in the middle of the symmetry line X–R. Otherwise there are only some
degeneracies of the dyz and dxz bands, e.g. along the lines �–R and R–A, which, however, do
not induce large shifts of the bands near the Fermi energy. Hence, the three t2g-derived bands
behave almost completely independently.



4942 V Eyert et al

This fact has important implications for the interpretation of the Fermi surface results,
since it allows one to uniquely assign each section of the Fermi surface to a single t2g band.
First, we attribute the almost perfect twofold flat Fermi surface in figures 15 to 17 exclusively
to the dx2−y2 bands. The aforementioned interruptions of this sheet above the X points can be
clearly connected to the hybridization of the dx2−y2 bands with the dyz- and dxz-derived bands
along the symmetry line X–R. It pushes the bands away from the Fermi energy and thereby
suppresses the Fermi surface portions in this k-space region. Nevertheless, the size of these
disruptions is rather limited and, hence, does not diminish the predominant influence of the
nesting with qz = π/c.

The dyz bands, which cut the Fermi energy along the lines �–X and �–M, are responsible
for those parts of the Fermi surface which are perpendicular to the basal plane. In particular, the
vertical edges of the rectangle centred about the � point as seen in figure 15 can be attributed
to these bands.

4.6. Embedded Peierls-type instability

The results of the previous two subsections can be summarized to the statement that, were it
not for the π∗ bands, we would end up with an assembly of weakly coupled Mo chains. The
nesting resulting from the twofold flat sheets should then give rise to a Peierls-type instability
of the d‖ bands, which is accompanied by a modulation of the metal-atom positions along the
rutile c-axis with a wave-vector component qz = (0, 0, π/c), i.e. a doubling of the c-axis and
a metal–metal pairing along this axis. Still, it remains to be demonstrated that this general
picture is not qualitatively altered by the presence of a three-dimensional background of π∗

electrons and that the increase in bonding–antibonding splitting of the Mo 4dx2−y2 (d‖) states
on going from the hypothetical rutile to the observed monoclinic structure as seen in figures 8
and 9 can be understood within the just-sketched framework of a Peierls-like scenario. To
this end we visualize, in particular, the changes of the dx2−y2 bands by using the same special
representation of the band structure as in figures 18 to 20 above. We thus again attach to each
band at each k-point a bar which reflects the contribution from the dx2−y2 orbital.

We start the discussion by displaying in figure 21 the electronic structure of hypothetical
rutile MoO2 in the narrow energy range from−2.5 to 3.5 eV about the Fermi energy, represented
along the high-symmetry lines within the first Brillouin zone of the simple monoclinic lattice,
shown in figure 4(b). In the same way as figure 10 was deduced from figure 3, figure 21 can
thus be constructed from figure 18 by folding the bands back from the simple tetragonal to
the simple monoclinic Brillouin zone. As was already discussed in connection with figure 18,
there is a strong dispersion along the lines �–A, E–Z, �–B, and D–Z, which have components
perpendicular to the rutile basal plane and correspond to half of the line �–R and half of the
line X–A of the tetragonal Brillouin zone. In contrast, the dispersion parallel to the rutile
basal plane is almost completely suppressed, with the bands staying at energies either well
below or above the Fermi energy. Exceptions include the lines A–E and B–D, where the Mo
4dx2−y2 states, while showing an almost vanishing dispersion, are found right at EF . This is
connected with the fact that these lines extend within the planes at height π/(2c), which, as
has been discussed in section 4.4, contain the characteristic twofold flat Fermi surface sections
accompanying the rutile structure. Hence, the lines A–E and B–D just extend through the
dominating part of the rutile Fermi surface.

The situation changes completely when we turn to monoclinic MoO2, for which we show
the analogous band structure in figure 22. In the monoclinic structure the occupied and
unoccupied Mo 4dx2−y2 bands along the lines �–A–E–Z and �–B–D–Z have moved by as
much as ≈2 eV downward and upward, respectively, relative to their positions in hypothetical



Embedded Peierls instability 4943

qq
q
q
q

q

q

q

q

q

q
q
q
q
q
qq
qqqqq

q
q
q
q
q
q
q
q
q
q
q
q
qqqq

q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qqqqq

q
q
q
q
q

q

q

q

q

q

q
q
q
qqq

q
q

q

q

q

q

q

q

q

q

q
q
q
q
q
qqqq

qqq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q

q

q

q

q

q

q

q

q

q

q
q
q
q
qqqqqq

q
q
q
q
q

q

q

q

q

q

q
q
q
qqq

q
q

q

q

q

q

q

q

q

q

q
q
q
q
q
qqqq

qqq
q
q
q
q
q
q
q
q
q
q
q
q
qq
q

q

q

q

q

q

q

q

q

q

q
q
q
q
qqq

qqq
q
q
q
q
q
q
q
q
q
q
q
qq
qqqqqq

q
q
q
q
q
q
q
q
q
q
q
q
qqqq

q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qqqqqq

q
q
q
q
q
q
q
q
q
q
qqqqq

q
q

q

q

q

q

q

q

q
q
q

q

qqqqqqqqq
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q

q

q

q

q

q

q

q

q

q

q
q
q
q
qqqqqqq

q
q
q
q
q
q
q
q
q
q
qqqqq

q
q

q

q

q

q

q

q

q
q
q

q

qqqqqqqqq
qq
q
q
q
q
q
q
q
q
q
q
q
qq
q

q

q

q

q

q

q

q

q

q

q
q
q
q
qqq

qq
q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
q
qqqq

q
q
q
q
q

q

q

q

q

q

q

q

q

q

q
q
q

q

q

q

q

q

q

q

q

q

q
q
q
q
q
qqqqq

qq
q
q
q
q
q

q

q

q
q

q

q

q

q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqq

qq
qq
qqqq

q

q

q

q

q

q

q

q

q

q
q
q
q
q
qqqqq

qq
q
q
q
q
q

q

q

q
q

q

q

q

q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqq

qq
qq
qqq

qq
q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
q
qqqq

q
q
q
q
q

q

q

q

q

q

q

q

q

q

q
q
q

q

q

q

q

q

q

q

q

q

q
q
q
q
q
qqqq

q
q

q

q

q

q

q
qq
q
q

q

q

q

q

q
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqq
qq
qq
qqqq

q

q

q

q

q

q

q

q

q

q
q
q
q
q
qqqq

q
q

q

q

q

q

q
qq
q
q

q

q

q

q

q
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqq
qq
qq
qqq

qq
q
q
q

q

q

q

q

q

q

q

q

q

q

q
q
q
q
q
q
q
q
q
q
q
q
q

q

q
q
q
q
q
qqqqq

q
q
q
q
q

q
q

q

q

q

q

q

q

q

q
q
q

q

q

qq

q

q

q

q

q

q

q

q

q
q
q
qqqqq

qq
qq
q

q

q

q

q

q

q

q
q

q

q
q
q
q
qqqqqqq

qq
q
q
q
q

q

q
qqq

q
q
q

q
q
q
q
q
q
q
q
q
q
qq
q

q

q

qq

q

q

q

q

q

q

q

q

q
q
q
qqqqq

qq
qq
q

q

q

q

q

q

q

q
q

q

q
q
q
q
qqqqqqq

qq
q
q
q
q

q

q
qqq

q
q
q

q
q
q
q
q
q
q
q
q
q
qq

qqq
q
q
q
q
q
q

q

qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

q

q
q
q
q
q
qqqqq

q
q
q
q
q

q
q

q

q

q

q

q

q

q

q
q
q

q

q

q

q

q

q

q

qq
q
q
q
q
qqqqqqqqqqqqqqqqqqqqq

q
q
q
q
qqqqqqq

qq
q
q
q
q

q

q
qqq

q
q
q

q
q
q
q
q
q
q
q
q
q
qq
q

q

q

q

q

q

q

q

qq
q
q
q
q
qqqqqqqqqqqqqqqqqqqqq

q
q
q
q
qqqqqqq

qq
q
q
q
q

q

q
qqq

q
q
q

q
q
q
q
q
q
q
q
q
q
qq

qq
q
q
q
q
q

q

q

q
q
q
q
q
q
q
q

q

qqq
qq
qq

q

qq
qq
qq
qqqqqqqq

q
q
q
q
q
q

q

q

qqqqqqq

q

q

q

q
q

q

q

q

q
q

q

q
q
q
q
qqqqqqqqqq

qq
q
q
q
q
q

q

q

qq
q
q
q
q
q
q
qq
qqqqq

q
q

q

q

q

q

q

q
qq
q
q
q

q

q
q
q
q
q
qq
qq

q

q

q

q
q

q

q

q

q
q

q

q
q
q
q
qqqqqqqqqq

qq
q
q
q
q
q

q

q

qq
q
q
q
q
q
q
qq
qqqqq

q
q

q

q

q

q

q

q
qq
q
q
q

q

q
q
q
q
q
qq
qq

qqqqqqqqqq
q
q

q

q
q
q
q

q

qqq
qq
qq

q

qq
qq
qq
qqqqqqqq

q
q
q
q
q
q

q

q

qqqqqqq

q

q
q
q
q

q

q

q

qq
q
q
q
q
qq
qqqqqqqq

q
q
q
q
q
q
q

q
q

q

q

q
q
q
q
q
q
q
qq
qqqqq

q
q

q

q

q

q

q

q
qq
q
q
q

q

q
q
q
q
q
qq
qq

q

q
q
q
q

q

q

q

qq
q
q
q
q
qq
qqqqqqqq

q
q
q
q
q
q
q

q
q

q

q

q
q
q
q
q
q
q
qq
qqqqq

q
q

q

q

q

q

q

q
qq
q
q
q

q

q
q
q
q
q
qq
qq

qqqqqqqqqqq

q

q

q
q
qq
qqqq

q
q
q
q
q
q
q
q
q
qq
qqq

qqqqqqqq
q
q
q
q
q
q
q
q
q
qq
qqqq

q
q

q

q

q

q

q
q
q
q
q
qq
qqqqq

qq
qq
q
qq
q
q

q

q

qq
q

qqqq
qq
qq
qqqqqqqq

q
q
q
q
qq
q

q

q
qq
qqqqqqqqqqqqq

q
q

q

q

q

q

q
q
q
q
q
qq
qqqqq

qq
qq
q
qq
q
q

q

q

qq
q

qqqq
qq
qq
qqqqqqqq

q
q
q
q
qq
q

q

q
qq
qqqqqqqqqq

qqqq
q
q

q

q

q

q

q

q

q

q

q

q

qqqqq
q
q
q
q
q
q
q
q
q
qq
qqq

qqqqqqqq
q
q
q
q
q
q
q
q
q
qq
qqq

q

q

q

q

q

q

q

q

q

q

q
q
qqqqq

q
q

q

q

q

q

q

q

q

q

qq

q

q

q

q

qqqq
qq
qq
qqqqqqqq

q
q
q
q
qq
q

q

q
qq
qqqqqqqqqqqq

q

q

q

q

q

q

q

q

q

q

q
q
qqqqq

q
q

q

q

q

q

q

q

q

q

qq

q

q

q

q

qqqq
qq
qq
qqqqqqqq

q
q
q
q
qq
q

q

q
qq
qqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqq
qqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqq

qqq
qqqqqqqqqq

q
q
q

q

q

q

q

q

q

q

qq
q
q

q

qqqqqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq

q

q

q

q

q

q

q

q

q
q
qqqqq

qqq
qqq

qqqqqqqqqqq
q
q
q

q

q

q

q

q

q

q

qq
q
q

q

qqqqqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq

q

q

q

q

q

q

q

q

q
q
qq

qqq
qqqqqqqqqqqqqqqqqqqq

qqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqq
qqq

qqqqq
qq
qqqq

q
q
q
q
q
q
q

q

q

q

q

q

q

q

qqqqqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq

q

q

q

q

q

q

q

q

q
q
qqqqq

qqq
qqq

qqqqqq
qq
qqqq

q
q
q
q
q
q
q

q

q

q

q

q

q

q

qqqqqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq

q

q

q

q

q

q

q

q

q
q
qq

qqq
q
q
q

q

q

q

q
q
qqqqq

q
q q

q

q

q

q
q
q
qqqqq

q
q
q
q
q

q

q

q
q

q

q

q

q
q
qqq

q
q

q

q

q q

q

q

q

q
q
q
qqqqq

q
q
q
q
q

q

q

q
q

q

q

q

q
q
qqq

q
q

q

q

q
qqq

q
q q

qqqqq
q
q q

qqqqqqqqqqq
q
q
q

q

q

q

q
q
qqq

q
q

q

q

q q
qqqqqqqqqqq

q
q
q

q

q

q

q
q
qqq

q
q

q

q

q
qqq

q
q q

qqqqqqqq
qqq

qq q
qqqqqqqq

qqq
qq

� Y C Z � A E Z � B D Z

E

eV
EF

-2.0

0.0

2.0

Figure 21. Weighted electronic bands of hypothetical rutile MoO2 along selected symmetry lines
within the simple monoclinic Brillouin zone, shown in figure 4(b). The meaning of the widths of
the bars is the same as in figure 18.
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Figure 22. Weighted electronic bands of monoclinic MoO2. The meaning of the widths of the
bars is the same as in figure 18.

rutile MoO2. This leads, in particular, to the formation of the split-off double band at the
lower edge of the t2g group, which we mentioned already at the end of section 4.1. As
a consequence of these drastic band-shifts, the Fermi surface due to the dx2−y2 states has
vanished completely. Moreover, the downshifts of the dx2−y2 states along the lines �–A–E–Z
and �–B–D–Z cause a considerable lowering of the total energy and, hence, a stabilization of
the monoclinic structure. In contrast, all other bands in the energy range from −2 to 2.5 eV,
which according to the analysis given in section 4.5 are mainly of Mo 4dxz and 4dyz character,
experienced only minor changes and maintain the metallic conductivity. To conclude, we have
indeed arrived at a Peierls-like scenario for the d‖ bands, which occurs without any visible
disturbance by the three-dimensional background of π∗ electrons.
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Finally, in order to check the relative importance of the metal–metal dimerization and
the zigzag-like lateral displacement of the metal atoms, we complement the previous results
with figure 23, which likewise corresponds to a hypothetical crystal structure. However, in
this structure, we assumed a monoclinic lattice and included the metal–metal dimerization
but ignored the zigzag-like lateral displacement (as well as the lattice strain). Obviously, the
complete separation of the bonding and antibonding d‖ bands in figure 23 reveals the dominant
influence of the metal–metal dimerization on the electronic structure. Yet, the dispersion,
especially of the bonding part of the d‖ bands, is still about twice as large as in the observed
monoclinic structure; see figure 22. Since according to analogous calculations the influence of
the lattice strain on the band structure is rather small, we attribute the change in dispersion to
the zigzag-like displacement of the Mo atoms. This is due to the fact that the zigzag motion of
the metal atoms shifts the dx2−y2 orbitals away from the rutile c-axis and thus diminishes the
overlap of the d‖ orbitals along the chains. In this respect the zigzag motion assists the metal–
metal dimerization in separating the bands. This behaviour is quite similar to the situation
in V2O5, where the zigzag-like distortion of the characteristic V–O double chains diminishes
overlap along the chains and substantially reduces the dispersion of the split-off conduction
bands [43].
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Figure 23. Weighted electronic bands of monoclinic MoO2 with only the dimerization included.
The meaning of the widths of the bars is the same as in figure 18.

5. Conclusions

The present first-principles ASW study of both the monoclinic and a hypothetical rutile
structure of MoO2 revealed a striking sensitivity of the Mo 4d d‖ states to structural changes.
While in the high-symmetry structure these bands display a quasi-one-dimensional dispersion
parallel to the rutile c-axis, they experience strong splitting of ≈4 eV into bonding and
antibonding branches due to the metal–metal dimerization characteristic of the monoclinic
structure. At the same time they embrace the isotropically dispersing π∗ states, which stay
rather inert and maintain the metallic conductivity. Hybridization between the d‖ and π∗ states
is only limited. As a consequence of the breakdown of the d‖ dispersion, the almost perfect
Fermi surface nesting of these bands on sheets bisecting the line �–Z is completely destroyed.
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We thus interpret the monoclinic structure as resulting from a Peierls-type instability of the
quasi-1D d‖ bands in the presence of an isotropic background of π∗ electrons.

Although we find in general good agreement with recent UPS and XAS data, distinct
deviations occur for the positions of the bonding and antibonding d‖ states. Due to the
imperfections of the LDA, their splitting is underestimated by ≈1 eV in the calculations
for metallic MoO2. The same situation has been reported for VO2 in its monoclinic insulating
phase, where the incomplete separation of the d‖ bands within the LDA causes a slight
semimetallic-like overlap of the bonding d‖ and the π∗ bands, and the opening of the optical
band gap is just missed [47, 48]

Naturally, the observed scenario of an embedded Peierls-type instability in MoO2 has
considerable implications for the construction of model Hamiltonians aiming at a description
of the early transition metal dioxides, in particular, of the neighbouring oxides VO2 and CrO2,
as well as their low-temperature instabilities.

Acknowledgments

We are indebted to U Eckern and S Klimm for many fruitful discussions. Thanks are due
to E Goering and O Müller for supplying the experimental data. We are grateful to I Höck
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